540 research outputs found

    Gap-filling using machine learning : implementations and applications in remote sensing

    Get PDF
    Gap-filling is an important preprocessing step in remote sensing applications because it enables successful sensor-based studies by greatly recovering the Earth’s surface records lost due to sensor failures and cloud cover. To date, a great number of methods have been proposed to reconstruct missing data in remote sensing images, but methods that deliver satisfactory performance in handling large-area gaps over heterogeneous landscapes are scant. To address this problem, this thesis proposes two methods—Missing Observations Prediction based on Spectral-Temporal Metrics (MOPSTM) and Spectral and Temporal Information for Missing Data Reconstruction (STIMDR)—that are capable of recovering small and large-area gaps in Landsat time series. Machine learning algorithms are used to implement MOPSTM and STIMDR. MOPSTM applies the k-Nearest Neighbors (k-NN) regression to the target image (i.e. image that is to be reconstructed) and spectral-temporal metrics (STMs, e.g. statistical quantiles) derived from a 1-year Landsat time series. Improved from MOPSTM, STIMDR achieves more powerful performance by employing an effective mechanic that excludes dissimilar data in a longer time series (e.g., changes in land cover). The proposed methods are compared site-to-site with six state-of-the-art gap-filling methods including three temporal interpolation methods and three hybrid methods. With higher accuracy in four study sites located in Kenya, Finland, Germany, and China, MOPSTM and STIMDR have indicated more robust performance than other methods, with STIMDR yielding higher accuracy than MOPSTM. Although gap-filling methods are proposed with increasing frequency, their necessity and effects are rarely evaluated, so this has become an unsolved research gap. This thesis addresses this research gap using land use and land cover (LULC) classification and tree canopy cover (TCC) modelling with the assistance of machine learning algorithms. Random forest algorithm is used to examine whether gap-filled images outperform non-gap-filled (or actual) images in LULC and TCC applications. The results indicate that (i) gap-filled images achieve no worse performance in LULC classification than the actual image, and (ii) gap-filled predictors derived from the Landsat time series deliver better performance on average than non-gap-filled predictors in TCC modelling. Therefore, we conclude that gap-filling has positive effects on LULC classification and TCC modelling, which justifies its inclusion in image preprocessing workflows.-

    Design and optimization of joint iterative detection and decoding receiver for uplink polar coded SCMA system

    Get PDF
    SCMA and polar coding are possible candidates for 5G systems. In this paper, we firstly propose the joint iterative detection and decoding (JIDD) receiver for the uplink polar coded sparse code multiple access (PC-SCMA) system. Then, the EXIT chart is used to investigate the performance of the JIDD receiver. Additionally, we optimize the system design and polar code construction based on the EXIT chart analysis. The proposed receiver integrates the factor graph of SCMA detector and polar soft-output decoder into a joint factor graph, which enables the exchange of messages between SCMA detector and polar decoder iteratively. Simulation results demonstrate that the JIDD receiver has better BER performance and lower complexity than the separate scheme. Specifically, when polar code length N=256 and code rate R=1/2 , JIDD outperforms the separate scheme 4.8 and 6 dB over AWGN channel and Rayleigh fading channel, respectively. It also shows that, under 150% system loading, the JIDD receiver only has 0.3 dB performance loss compared to the single user uplink PC-SCMA over AWGN channel and 0.6 dB performance loss over Rayleigh fading channel

    Impact of Preprocessing on Tree Canopy Cover Modelling : Does Gap-Filling of Landsat Time Series Improve Modelling Accuracy?

    Get PDF
    Preprocessing of Landsat images is a double-edged sword, transforming the raw data into a useful format but potentially introducing unwanted values with unnecessary steps. Through recovering missing data of satellite images in time series analysis, gap-filling is an important, highly developed, preprocessing procedure, but its necessity and effects in numerous Landsat applications, such as tree canopy cover (TCC) modelling, are rarely examined. We address this barrier by providing a quantitative comparison of TCC modelling using predictor variables derived from Landsat time series that included gap-filling versus those that did not include gap-filling and evaluating the effects that gap-filling has on modelling TCC. With 1-year Landsat time series from a tropical region located in Taita Hills, Kenya, and a reference TCC map in 0–100 scales derived from airborne laser scanning data, we designed comparable random forest modelling experiments to address the following questions: 1) Does gap-filling improve TCC modelling based on time series predictor variables including the seasonal composites (SC), spectral-temporal metrics (STMs), and harmonic regression (HR) coefficients? 2) What is the difference in TCC modelling between using gap-filled pixels and using valid (actual or cloud-free) pixels? Two gap-filling methods, one temporal-based method (Steffen spline interpolation) and one hybrid method (MOPSTM) have been examined. We show that gap-filled predictors derived from the Landsat time series delivered better performance on average than non-gap-filled predictors with the average of median RMSE values for Steffen-filled and MOPSTM-filled SC’s being 17.09 and 16.57 respectively, while for non-gap-filled predictors, it was 17.21. MOPSTM-filled SC is 3.7% better than non-gap-filled SC on RMSE, and Steffen-filled SC is 0.7% better than non-gap-filled SC on RMSE. The positive effects of gap-filling may be reduced when there are sufficient high-quality valid observations to generate a seasonal composite. The single-date experiment suggests that gap-filled data (e.g. RMSE of 16.99, 17.71, 16.24, and 17.85 with 100% gap-filled pixels as training and test datasets for four seasons) may deliver no worse performance than valid data (e.g. RMSE of 15.46, 17.07, 16.31, and 18.14 with 100% valid pixels as training and test datasets for four seasons). Thus, we conclude that gap-filling has a positive effect on the accuracy of TCC modelling, which justifies its inclusion in image preprocessing workflows.Peer reviewe

    A method for predicting large-area missing observations in Landsat time series using spectral-temporal metrics

    Get PDF
    Combined with increasing computing ability, the free and open access to Landsat archive has enabled the changes on the Earth’s surface to be monitored for almost 50 years. However, due to missing observations that result from clouds, cloud shadows, and scan line corrector failure, the Landsat data record is neither a continuous nor consistent time series. We present a new gap-filling method, Missing Observation Prediction based on Spectral-Temporal Metrics (MOPSTM), which uses spectral-temporal metrics computed from Landsat one-year time series and the k-Nearest Neighbor (k-NN) regression. Herein, we demonstrate the performance of MOPSTM by using five, nearly cloud-free, full scene Landsat images from Kenya, Finland, Germany, the USA, and China. Cloud masks from the images with extensive cloud cover were used to simulate large-area gaps, with the highest value we tested being 92% of missing data. The gap-filling accuracy was assessed quantitatively considering all five sites and different land use/land cover types, and the MOPSTM algorithm performed better than the spectral angle-mapper based spatiotemporal similarity (SAMSTS) gap-filling algorithm. The mean RMSE values of MOPSTM were 0.010, 0.012, 0.025, 0.012, and 0.018 for the five sites, while those of SAMSTS were 0.011, 0.017, 0.038, 0.014, and 0.023, respectively. Furthermore, MOPSTM had mean coefficient of determination (R2) values of 0.90, 0.86, 0.78, 0.92, and 0.89, which were higher than those for SAMSTS (0.84, 0.75, 0.55, 0.89, and 0.83). The performance of MOPSTM was not considerably affected by image gap sizes as images ranging from gap sizes of 51% of the image all the way to 92% of the image yielded similar gap-filling accuracy. Also, MOPSTM does not require local parametertuning except for the k values in the k-NN regression, and it can make a gap-free image from any acquisition date. MOPSTM provides a new spectral-temporal approach to generate the gap-free imagery for typical Landsat applications, such as land use, land cover, and forest monitoring.Peer reviewe

    RESEARCH ON UNBALANCED WEIGHING EXPERIMENT OF MULTI-POINT BRACED SWIVEL CABLE-STAYED BRIDGE

    Get PDF
    To guarantee the safety of the swivel process, the weighing experiment before the swivel is especially important. Based on this, this paper takes a twin-tower, double-cable prestressed concrete swivel cable-stayed bridge as the background and suggests a multi-point braced swivel weighing experiment involving the joint force of the arm-brace and the spherical hinge to solve problems such as a particular obstacle in the relying project's swivelling process. Firstly, the relevant weighing experiment formulas for various circumstances were theoretically derived. The field test results were then used to calculate the jacking force at the limit state during the jacking process, which was then substituted into the relevant formulae, and the relevant parameters of the weighing experiment were calculated. Finally, the counterweight is adjusted based on the weighing results to carry out the structural rotation. The angular velocity was stable during the swivelling process, and the structure was successfully swivelled. The successful practice of a multi-point braced swivel weighing experiment involving the joint force of the arm-brace, and the spherical hinge can provide a reference for the design and construction of similar bridges

    Spectral Temporal Information for Missing Data Reconstruction (STIMDR) of Landsat Reflectance Time Series

    Get PDF
    The number of Landsat time-series applications has grown substantially because of its approximately 50-year history and relatively high spatial resolution for observing long term changes in the Earth’s surface. However, missing observations (i.e., gaps) caused by clouds and cloud shadows, orbit and sensing geometry, and sensor issues have broadly limited the development of Landsat time-series applications. Due to the large area and temporal and spatial irregularity of time-series gaps, it is difficult to find an efficient and highly precise method to fill them. The Missing Observation Prediction based on Spectral-Temporal Metrics (MOPSTM) method has been proposed and delivered good performance in filling large-area gaps of single-date Landsat images. However, it can be less practical for a time series longer than one year due to the lack of mechanics that exclude dissimilar data in time series (e.g., different phenology or changes in land cover). To solve this problem, this study proposes a new gap-filling method, Spectral Temporal Information for Missing Data Reconstruction (STIMDR), and examines its performance in Landsat reflectance time series. Two groups of experiments, including 2000 × 2000 pixel Landsat single-date images and Landsat time series acquired from four sites (Kenya, Finland, Germany, and China), were performed to test the new method. We simulated artificial gaps to evaluate predicted pixel values with real observations. Quantitative and qualitative evaluations of gap-filled images through comparisons with other state-of-the-art methods confirmed the more robust and accurate performance of the proposed method. In addition, the proposed method was also able to fill gaps contaminated by extreme cloud cover for a period (e.g., winter in high-latitude areas). A down-stream task of random forest supervised classification through both gap-filled simulated datasets and the original valid datasets verified that STIMDR-generated products are relevant to the user community for land cover applications

    BPTF promotes tumor growth and predicts poor prognosis in lung adenocarcinomas.

    Get PDF
    BPTF, a subunit of NURF, is well known to be involved in the development of eukaryotic cell, but little is known about its roles in cancers, especially in non-small-cell lung cancer (NSCLC). Here we showed that BPTF was specifically overexpressed in NSCLC cell lines and lung adenocarcinoma tissues. Knockdown of BPTF by siRNA significantly inhibited cell proliferation, induced cell apoptosis and arrested cell cycle progress from G1 to S phase. We also found that BPTF knockdown downregulated the expression of the phosphorylated Erk1/2, PI3K and Akt proteins and induced the cleavage of caspase-8, caspase-7 and PARP proteins, thereby inhibiting the MAPK and PI3K/AKT signaling and activating apoptotic pathway. BPTF knockdown by siRNA also upregulated the cell cycle inhibitors such as p21 and p18 but inhibited the expression of cyclin D, phospho-Rb and phospho-cdc2 in lung cancer cells. Moreover, BPTF knockdown by its specific shRNA inhibited lung cancer growth in vivo in the xenografts of A549 cells accompanied by the suppression of VEGF, p-Erk and p-Akt expression. Immunohistochemical assay for tumor tissue microarrays of lung tumor tissues showed that BPTF overexpression predicted a poor prognosis in the patients with lung adenocarcinomas. Therefore, our data indicate that BPTF plays an essential role in cell growth and survival by targeting multiply signaling pathways in human lung cancers
    corecore